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1

The language of categories

1.1 Logical foundations of the theory

It is a common practice, when developing mathematics, to consider a
statement involving "all groups" or "all topological spaces" For
example we say that an abelian group A is projective when, for every
surjective homomorphism of abelian groups / : B >C and every group
homomorphism g: A >C, g factors through / (see diagram 1.1). This
definition of "A being projective" starts thus with a list of universal
quantifiers

VB VC V/ Vp . . .

This formula, from the point of view of set theory, creates a problem:
the variables B and C are "running through something (= the collec-
tion of all abelian groups) which is not a set". This last fact is an easy
consequence of the following well-known paradox.

Proposition 1.1.1 There exists no set S such that

x € S <& x is a set.

Proof In other (bad) words: "the set of sets does not exist"! To prove
this, let us assume such an S exists. Since x £ x is a formula of set
theory

T = {x \x € S and x £ x}

defines a subset T of 5, thus in particular a set T. The law of excluded
middle tells us that

TeT or T£T.

But from the definition of T itself we conclude that

T eT^T £ T,
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The language of categories

A

9

B 7—> C

Diagram 1.1

thus in both cases a contradiction. •
Category theory will in fact be handling all the time "the collection of

all groups", "the collection of all sets", "the collection of all topological
spaces", and so on Therefore it is useful to pay some attention to
these questions of "size" at the very beginning of this book.

A first way to handle, in category theory, problems of this type is to
assume the axiom on the existence of "universes".

Definition 1.1.2 A universe is a set U with the following properties
(1) x G y and y eU => x G U,
(2) IeUandVieIXieU=> \JieIXi£U9

(3) xeU=> v{x) e u,
(4) x G U and f:x >y surjective function => y €U,
(5) NeU,
where N denotes the set of finite ordinals and V(x) denotes the set of
subsets of x.

Notice some easy consequences of the definition.

Proposition 1.1.3
(1) x eU and y Q x => y eU,
(2) x € U and y eU => {x,y} eU,
(3) x E U and y eU => xxy eU,
(4) x e U and y eU ^ xy eU.

Proof We prove (1) and leave the rest as an easy exercise. First of all
0 G N and N G M , thus 0 G U. Now if x G U and y C x with y ^ 0,
choose z G y. Define / : x >y to be

f(t) = zi£
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1.1 Logical foundations of the theory 3

Obviously / is surjective and therefore y GW. •

It should be noticed that - assuming the axiom of choice in our set the-
ory - condition (4) in definition 1.1.2 could have been replaced precisely
by

x eU and y Cx => y £U.

Now the axiom on the existence of universes is just

Axiom 1.1.4 Every set belongs to some universe.
Not much is known about this axiom from the point of view of set

theory. Because of the property

xGW and y C x =>• y E ZY,

it sounds reasonable to think of the elements of a universe as being
"sufficiently small sets". If you choose to use the theory of universes as
a foundation for category theory, the following convention has to remain
valid throughout this book.

Convention 1.1.5 We fix a universe U and call "small sets" the ele-
ments ofli.

Obviously we now have the following

Proposition 1.1.6 There exists a set S with the property x G S O x
is a small set.

Proof Just choose S — U. •

An analogous statement is valid for small abelian groups, small topo-
logical spaces, and so on For example a small group is a pair (G, +)
where G is a small set (and there is just a set of them) and + is a suitable
mapping G x G >G (and there is just a set of them); so we can draw
the conclusion by proposition 1.1.3.

An alternative way to handle these problems of size is to use the
Godel-Bernays theory of sets and classes. In the Zermelo-Prankel theory,
the primitive notions are "set" and "membership relation". In the Godel-
Bernays theory, there is one more primitive notion called "class" (think
of it as "a big set"); that primitive notion is related to the other two by
the property that every set is a class and, more precisely:

Axiom 1.1.7 A class is a set if and only if it belongs to some (other)
class.

The axioms concerning classes imply in particular the following "com-
prehension scheme" for constructing classes.
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4 The language of categories

Comprehension scheme 1.1.8 If <p(xi,... ,xn) is a formula where
quantification just occurs on set variables, there exists a class A such
that

(x i , . . . , x n ) € A if and only if (p{x\,... ,xn).

For example, there exists a class A with the property

(G, +) € A if and only if (G, +) "is a group"

(where "is a group" is an abbreviation for the group axioms); in other
words, this defines the "class of all groups". In the same way we deduce
the existence of the class of sets, the class of topological spaces, the class
of projective abelian groups, and so on.

When the axiom of universes is assumed and a universe U is fixed,
one gets a model of the Godel-Bernays theory by choosing as "sets" the
elements of U and as "classes" the subsets of U. It makes no relevant
difference whether we base category theory on the axiom of universes
or on the Godel-Bernays theory of classes. We shall use the terminology
of the latter, thus using the words "set" and "class"; the reader who
prefers the terminology of the former should thus read "small set" when
we write "set" and should read "set" when we write "class".

1.2 Categories and functors
With every mathematical structure on a set is generally associated a
notion of "mapping compatible with that structure": a group homo-
morphism between groups, a linear mapping between vector spaces, a
continuous mapping between topological spaces, and so on The ba-
sic examples of a category are designed in precisely that way: those sets
provided with a prescribed structure and, between them, those mappings
which are compatible with the given strucure.

Definition 1.2.1 A category^ consists of the following:

(1) a class \(&\, whose elements will be called "objects of the category";
(2) for every pair A, B of objects, a set ^(A^B), whose elements will

be called "morphisms" or "arrows" from A to B;
(3) for every triple A, B, C of objects, a composition law

the composite of the pair (/, g) will be written go f or just gf;
(4) for every object A, a morphism 1A € # ( A ^4), called the identity on

A.
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1.2 Categories and functors

A ^—> B

h

D
k

Diagram 1.2

These data are subject to the following axioms.

(1) Associativity axiom: given morphisms f G ^(A^B), g G
h G ^(C, D) the following equality holds:

ho(gof) = (hog)of.

(2) Identity axiom: given morphisms f G ^(A, B), g G ^(B,C) the
following equalities hold:

1B O / = / , 9 o 1B = g.

A morphism / G ̂ {A, B) will often be represented by the notation
/ : A >B; A is called the "domain" or the "source" of / and B is called
the "codomain" or the "target" of / . In the situation of diagram 1.2, we
say that the given square is "commutative" when the equality gof = koh
holds between the two possible composites; an analogous terminology
holds for diagrams of arbitrary shape.

As usual 1A is the only morphism from A to A which plays the role
of an identity for the composition law. Indeed if %A G #(J4, A) is another
such morphism

1A = 1A

Let us now define a "homomorphism of categories".

Definition 1.2.2 A functor F from a category si to a category
consists of the following:
(1) a mapping

between the classes of objects of si and &; the image of A G s/ is
written F(A) or just FA;

(2) for every pair of objects A, A' of si, a mapping

si {A, A1) ><%(FA, FA')-,

the image of f G si {A, A!) is written F(f) or just Ff.

These data are subject to the following axioms:

Cambridge Books Online © Cambridge University Press, 2009
Downloaded from Cambridge Books Online by IP 131.111.250.235 on Fri Mar 27 22:02:26 GMT 2015.

http://dx.doi.org/10.1017/CBO9780511525858.003
Cambridge Books Online © Cambridge University Press, 2015



6 The language of categories

(1) for every pair of morphisms f e si {A, A'), g G s/(A\ A")

F(gof) = F(g)oF(f);

(2) for every object A € si

F(1A) = IFA.

Given two functors F: si >& and G: £6 >^, a pointwise compo-
sition immediately produces a new functor GoF: si ><&. This compo-
sition law is obviously associative. The identity functor on the category
si (i.e. choose every mapping in definition 1.2.2 to be the identity) is
clearly an identity for that composition law. A careless argument could
thus lead to the conclusion that categories and functors constitute a
new category . . . but this can easily be reduced to a contradiction us-
ing proposition 1.1.1! The point is that, in the axioms for a category, it
is required to have a set of morphisms between any two objects. And
when the categories si and 0$ merely have a class of objects, there is no
way to force the functors from si to Si to constitute a set All along in
this book we shall realize how crucial it is, in category theory, to distin-
guish all the time between sets and classes. To facilitate the language,
we particularize definition 1.2.1.

Definition 1.2.3 A category <& is called a small category when its class
|^ | of objects is a set.

The next result is then obvious (see 1.1.8).

Proposition 1.2.4 Small categories and functors between them consti-
tute a category. •

Examples 1.2.5

Let us first list some obvious examples of categories and the correspond-
ing notation, when it is classical.

1.2.5.a Sets and mappings: Set.

1.2.5.b Topological spaces and continuous mappings: Top.

1.2.5.C Groups and group homomorphisms: Gr.

1.2.5.d Commutative rings with unit and ring homomorphisms: Rng.

1.2.5.e Real vector spaces and linear mappings: VectR.

1.2.5.f Real Banach spaces and bounded linear mappings:

1.2.5.g Sets and injective mappings.

1.2.5.h Real Banach spaces and linear contractions:

And so on.
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1.2 Categories and functors 7

Examples 1.2.6

Here is a list of some mathematical devices which can also be seen as
categories.

1.2.6.a Choose as objects the natural numbers and as arrows from n
to m the matrices with n rows and m columns; the composition is the
usual product of matrices.

1.2.6.b A poset (X, <) can be viewed as a category 3C whose objects
are the elements of X; the set #T(x, y) of morphisms is a singleton when
x < y and is empty otherwise. The possibility of defining a (unique)
composition law is just the transitivity axiom of the partial order; the
existence of identities is just the reflexivity axiom.

1.2.6.C Every set X can be viewed as a category 9£ whose objects are
the elements of X and the only morphisms are identities. (3C(x, y) is a
singleton when x — y and is empty otherwise). A category whose only
morphisms are the identities is called a discrete category.
1.2.6.d A monoid (M, •) can be seen as a category Jl with a single
object * and M = Jt(*, *) as a set of morphisms; the composition law
is just the multiplication of the monoid. As a special case, we can view
any group as a category. When a ring with unit is considered as a special
case of a category, the composition law of that category is generally that
induced by the multiplication of the ring.

Examples 1.2.7
Prom a given category ^ , one very often constructs new categories of
"diagrams in W. Here are some basic contructions.
1.2.7.a Let us fix an object / E ^ . The category # / / of "arrows over
/" is defined by the following.

• Objects: the arrows of ^ with codomain / .
• Morphisms from the object (/: A >/) to the object (g: B »/):

the morphisms h: A >B in ^ such that g o h = f (the "commu-
tative triangles over / " ) ; see diagram 1.3.

The composition law is that induced by the composition of #. Notice
that when ^ is the category of sets and mappings, a mapping / : A >I
can be identified with the /-indexed family of sets {f~1(i))iGl

 s o that the
previous category is just that of /-indexed families of sets and /-indexed
families of mappings.

1.2.7.b Again fixing an object / G #, we define the category I/W of
"arrows under /" .
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The language of categories

h

• Objects: the arrows of # with domain /.
• Morphisms from the object / : / > A to the object g: I > B: the

morphisms h: A >B in # such that ho f = g (the "commutative
triangles under /"); see diagram 1.4.

The composition law is induced by that of (€.
1.2.7.C The category Ar(#) of arrows of # has for objects all the
arrows of #; a morphism from the object (/: A >J5) to the object
(g: C >D) is a pair (h: A »C, k: B >D) of morphisms of #, with
the property k o f = g o h ("& commutative square"); see diagram 1.5.
Again, the composition law is that induced pointwise by the composition
in#.

In examples 1.2.7.a,b,c, it is easy to check that when # is small, so
are the three categories # / / , / / # , Ar(^).

Examples 1.2.8
Let us finally mention some first examples of functors.
1.2.8.a The "forgetful functor" U: Ab—->Set from the category Ab
of abelian groups to the category Set of sets maps a group (G, +) to the
underlying set G and a group homomorphism / to the corresponding
mapping / .
1.2.8.b If R is a commutative ring, let us write Mod# for the cate-
gory of i?-modules and i2-linear mappings. Tensoring with R produces
a functor from the category Ab of abelian groups to
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1.2 Categories and functors

D

Diagram 1.5

An abelian group A is mapped to the group A ®% R provided with the
scalar multiplication induced by the formula

(a 0 r)rf = a ® (rrr).

A group homomorphism / : A >B is mapped to the iMinear mapping

1.2.8.C We obtain a functor V: Set >Set from the category of sets
to itself by mapping a set A to its power set V(A) and a mapping
/: A >B to the "direct image mapping" from V(A) to V(B).

1.2.8.d Given a category # and a fixed object C 6 #, we define a
functor

>Set

from # to the category of sets by first putting

Now if / : A > B is a morphism of #, the corresponding mapping

is defined by the formula

for an arrow g G %l(C,A). Such a functor is called a "representable
functor" (the functor is "represented" by the object C).

1.2.8.e Given two categories J / , 0& and a fixed object B € ^ , we define
the "constant functor to i?"

by
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10 The language of categories

FA aA ) GA

Ff Gf

FA'

Diagram 1.6

for every object A E si and every morphism / of si.

1.3 Natural transformations

General topology studies, in particular, topological spaces and continu-
ous functions between them. But given two continuous functions from a
space to another one, there exists also the notion of a "homotopy" be-
tween those two continuous functions, which allows you to "pass" from
one function to the other one. A similar situation exists for categories
and functors.

Definition 1.3.1 Consider two functors F, G: -Q/ \@t from a category
si to a category 0$. A natural transformation a: F => G from F to G is
a class of morphisms (a^: FA >GA)A^^ of@t indexed by the objects
of si and such that for every morphism f: A > A! in si, OLA1 ° F(f) =
G(f) o a A- (see diagram 1.6)

It is an obvious matter to notice that, when F , G, H are functors
from si to 88 and a:F => G, /3:G => H are natural tranformations, the
formula

(/? o a) A = PA O a A

defines a new natural transformation /3 o a: F =4> H. That composition
law is clearly associative and possesses a unit at each functor F: this is
just the natural transformation \p whose A-component is IF A- Again
a careless argument would deduce the existence of a category whose
objects are the functors from si to & and whose morphisms are the
natural transformations between them. But since si and 3$ have merely
classes of objects, there is in general no way to prove the existence of
a set of natural transformations between two functors! But when si is
small, that problem disappears and we get the following result.
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1.3 Natural transformations 11

Proposition 1.3.2 Let si be a small category and Si an arbitrary
category The functors from si to $ and the natural transformations
between them constitute a category; that category is small as long as 0&
is small. •

We prove now the first important theorem of this book. We refer to
example 1.2.8.d for the description of the representable functors.

Theorem 1.3.3 (The Yoneda lemma)
Consider a functor F: si >Set from an arbitrary category si to the
category of sets and mappings, an object A E si and the correspond-
ing representable functor si (A, —)\si >Set. There exists a bijective
correspondence

0F,A:Uat(s/(A,-),F) ^-^FA

between the natural transformations from s/(A, —) to F and the ele-
ments of the set FA; in particular those natural transformations con-
stitute a set. The bijections 0p,A constitute a natural transformation
in the variable A; when si is a small category the bijections 0p,A sdso
constitute a natural transformation in the variable F.

Proof For a given natural transformation a: si(A, - ) =>- F , we define
OF,A{OL) = «A(1A)- With a given element a € FA we associate, for every
object B e si, a mapping

r(a)B: s/(A, B) >FB

defined by r(a)B(f) = F(/)(o). This class of mappings defines a natural
transformation

since, for every morphism g: B >C in si, the relation

Fg o r{a)B = r(a)c ° st{A, g)

(see diagram 1.7) reduces to the equality

f){a) = Fg((Ff)(a)),

which follows from the functoriality of F.
0F,A and r are inverse to each other. Indeed, starting from a € FA

we have

^)) = <°)A(U) = F(lA)(a) = lFA(a) = a.

Cambridge Books Online © Cambridge University Press, 2009
Downloaded from Cambridge Books Online by IP 131.111.250.235 on Fri Mar 27 22:02:26 GMT 2015.

http://dx.doi.org/10.1017/CBO9780511525858.003
Cambridge Books Online © Cambridge University Press, 2015



12 The language of categories

Fg

Diagram 1.7

On the other hand, starting from a:
phism / : A >B in s&\

, —) =>• F and choosing a mor-

= F(f)(aA(lA))
= aB(sf(AJ
= aB(folA)

where the third equality follows from the naturality of a. This proves
the first part of the theorem.

To prove the naturality of the bijections, let us consider the functor
N: si >Set defined by

and for every morphism / : A >B in s/

N(f): tiat(sf(A, - ) , F) • Nat(j/(J5, - ) , F)

(see example 1.3.6.C for the definition of jrf(f, —)). We axe claiming the
existence of a natural transformation r]:N=$-F defined by TJA = 0F,A-
Indeed, with the previous notation,

(OF,B O N(f))(a) = 9F,B(a o

= {aBoJ/(A,f))(lA)
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1.3 Natural transformations 13

Moreover, when si is a small category, it makes sense to consider the
category Fun(jaf, Set) of functors from si to Set and natural transforma-
tions between them. For a fixed object A £ si we consider this time the
functor M: Fun(si, Set) >Set defined by

= ti*t(s/(A,-),F);

for a functor G: si >Set and a natural transformation 7: F => G,

M(7): Nat(^(A, - ) , F) >Nat(j/(A, - ) , G)

is defined by M(pf){a) = 70a. On the other hand we consider the functor
"evaluation in A" evA: Fun(j/, Set) >Set defined by

= FA, evA(7)=7 A.

We claim to have a natural transformation fi:M => evA defined by
fiF — OF,A- Indeed, with the previous notation,

(evA(7) o 0F,A)(a) = -yA(<*A(lA)). •

In proposition 1.3.2 we have used a first composition law for natural
transformations. In fact, there exists another possible type of composi-
tion for natural transformations.

Proposition 1.3.4 Consider the following situation:
_F , H .

si~G &a \» K l& \<€
where si, 39, <& are categories, F, G, H, K are functors and a, (3 axe
natural transformations. The formula, for every A £ si,

(/? * a)A = PGA O H(aA) = K(aA) o (3FA

defines a natural transformation

{3*a:HoF^KoG.

called the i(Godement product" of the two natural transformations a
and (3.

Proof (/? * a)A is thus defined considering diagram 1.8 which is in-
deed commutative by naturality of /?. The proposition asserts, for every
morphism f:A >A' in si, the commutativity of the outer rectangle
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14 The language of categories

PFA PGA

KFA
K(aA)

Diagram 1.8

HFf HGf KGf

HFA' -+KGA'

Diagram 1.9

in diagram 1.9. It holds since the first square commutes by naturality of
a and functoriality of H and the second square commutes by naturality
of/?. •

The proof of the next proposition is a straightforward exercise left to
the reader.

Proposition 1.3.5 Consider the situation
_F . G

si H \
L i

K i
Mi

where sf, 88, <& are categories, F, G, H, K, L, M are functors and a,
(3, 7, 6 are natural transformations. The following equality holds:

(6 * 7) o (13 * a) = (6 o p) * (7 o a). •

For the sake of brevity and with the notations of the previous propo-
sitions, we shall often write (3 * F instead of /? * 1^ or G * a instead of

Examples 1.3.6

1.3.6.a Consider the power set functor V: Set >Set defined in 1.2.8.C
and the identity functor id: Set >Set. The mappings "singleton"
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1.4 Contravariant functors 15

which map an element x G E to the singleton {x} constitute a natural
transformation a: id => V.

1.3.6.b Consider the category VectR of real vector spaces and the
bidual functor

()**:VectR >VectR.

The canonical morphisms

av:V >V***

for every vector space V, define a natural transformation from the iden-
tity functor to the bidual functor.

1.3.6.C Consider a category si and a morphism / : A >B of si. We
obtain a natural transformation

between the functors represented by A and B (see 1.2.8.d) by putting,
for every object C G si and every morphism g G si(B, C),

Generally we shall write si(f, C) for the mapping J / ( / , — )c>

1.3.6.d Given two categories si, & and a fixed morphism b: B > J3',
we define the "constant natural transformation on 6" A&: A^ => A#> by
(AI,)A = b for every object At si (see 1.2.8.e for the definition of A#,

1.4 Contravariant functors

If si is a small category, we know it makes sense to consider the category
of functors from si to Set and natural transformations between them
(see 1.3.2). In examples 1.2.8.d and 1.3.6.C we have defined a mapping

y* : j / >Fun(j/,Set),

where A G \si\ is an object of si and / is a morphism of si. It is rather
obvious that, given morphisms

A f-—>B 9- >C

in si, we obtain the following equalities:

Y*(g o f) = Y*(f) o Y*(g), Y*(lB) - 1Y.B.

Cambridge Books Online © Cambridge University Press, 2009
Downloaded from Cambridge Books Online by IP 131.111.250.235 on Fri Mar 27 22:02:26 GMT 2015.

http://dx.doi.org/10.1017/CBO9780511525858.003
Cambridge Books Online © Cambridge University Press, 2015



16 The language of categories

So Y* is a mapping which "reverses the direction of every morphism",

f:A >B, Y*(f):Y*(B) >Y*(A),

and - up to this reversing process - preserves the composition law and
identities. This is what we shall call a "contravariant functor".

Definition 1.4.1 A contravariant functor F from a category si to a
category 0& consists of the following:

(1) a mapping

between the classes of objects; the image of A G si is written F(A)
or just FA;

(2) for every pair of objects A, A' G si, a mapping

s/{A, Ar) >£{FA\ FA);

the image of f G si {A, A!) is written F(f) or just Ff.

These data are subject to the following axioms:

(1) for every pair of morphisms f G si (A, A'), g € s/(A\ A"),

F(gof) = F(f)oF(g);

(2) for every object A G si,

F(1A) = IFA-

When confusion could be possible, we shall emphasize the fact that
we are definitely working with a functor in the sense of definition 1.2.2
by calling it a covariant functor.

The notion of a natural transformation can easily be carried over to
the contravariant case.

Definition 1.4.2 Consider two contravariant functors F,G:jtf^Z$3#
from a category si to a category Si. A natural transformation a:F => G
from F toG is a class of morphisms (a A- FA >GA)A€S/ of Si indexed
by the objects of s/ and such that for every morphism f:A >A' in
s/, G(f) o C*A' =OLA° F(f) (see diagram 1.10).

All the results of sections 1.2 and 1.3 can be transposed to the con-
travariant case; this is a straightforward exercise left to the reader. More-
over, we should mention at this point that the validity of this transpo-
sition can also be obtained as an application of the duality principle of
section 1.10.
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1.4 Contravariant functors 17

FA —2A^> GA

Ff Gf

FA' aA, > GA'

Diagram 1.10

Examples 1.4.3

1.4.3.a We started this section with the example of the "contravariant
Yoneda embedding"

Y*: si > Fun(j^, Set)

for a small category si.

1.4.3.b Example 1.2.8.d can be "dualized"; given a category si and
an object A £ si we define a contravariant functor

si(-, A): si >Set

by the formulas

for every object B G «s/, and

s t ( - , A ) ( f ) ( g ) = g o f

for all morphisms / : B >C and g: C > A in si.

1.4.3.C Example 1.3.6.C can be "dualized" as well. With the previous
notation we obtain a natural transformation

for / : B >C, by putting

for every object D and every morphism h: D >B. Generally, we shall
write s/(D, f) for the mapping sf(—, f)r>.

1.4.3.d Again using the previous notation, example 1.4.3.a itself can
be "dualized". Let us write Fun*(j/, Set) for the category of contravari-
ant functors from a small category si to Set. The "covariant Yoneda
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18 The language of categories

embedding" is the covariant functor

Y+.st >Fun*(j/,Set)

defined by the formulas

for every object A G ^ and every morphism / of si,

1.4.3.e Consider the category Rng of commutative rings with unit and
the category Top of topological spaces and continuous mappings. The
construction of the Zariski spectrum of a ring gives rise to a contravariant
functor

Sp: Rng >Top.

For a given ring A, Sp(A) is the Zariski spectrum of A, that is the
set of prime ideals of A provided with the topology generated by the
fundamental open subsets

(9a = {P e Sp(A) \a £ P)

for every element a € A. For a given ring homomorphism / : A >i?,
the inverse image process maps a prime ideal of B to a prime ideal of
A; therefore we get a mapping

Sp(/):Sp(B) >Sp(A),

which is easily proved to be continuous.

1.4.3.f The last example in this section is that of a contravariant
functor V*: Set >Set which coincides on the objects with the covariant
functor P:Set ->Set defined in 1.2.8.C Thus V*{X) is the power set
of X and for a given mapping / : X » Y",

V*(f):V*(Y) >V*(X), V*(f)(U) = r

is the inverse image mapping.

1.5 Full and faithful functors

An abelian group is a set provided with some additional structure; a
group homomorphism is a mapping which satisfies some additional prop-
erty. So, in some vague sense, the category of abelian groups is "included"
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1.5 Full and faithful functors 19

in the category of sets... the expected "inclusion" being the functor de-
scribed in example 1.2.8.a. But this functor is by no means injective
since on the same set G, there exist in general many different abelian
group structures. In fact this functor is what we shall call a "faithful
functor".

Definition 1.5.1 Consider a functor F: si >@t and for every pair of
objects A, A! G si, the mapping

(1) The functor F is faithful when the abovementioned mappings are
injective for all A, A!.

(2) The functor F is full when the abovementioned mappings are sur-
jective for all A, A!.

(3) The functor F is full and faithful when the abovementioned map-
pings are bijective for all A, A!'.

(4) The functor F is an isomorphism of categories when it is full and
faithful and induces a bijection \s/\ > \&\ on the classes of ob-
jects.

The reader will easily adapt definition 1.5.1 to the case of contravari-
ant functors. Definiton 1.5.1.4 is a special instance, in the category of
small categories and functors, of the general notion of isomorphism in a
category.

Proposition 1.5.2 The Yoneda embedding functors described in ex-
amples 1.4.3.a,d are full and faithful functors.

Proof In the case of the contravariant Yoneda embedding, we have to
prove that given two objects A, B in a small category A, the canonical
mapping

, B)

is bijective. This is a special case of the Yoneda lemma (see 1.3.3) applied
to the functor s/(A, —) and the object B.

The case of the covariant embedding is proved in a "dual" way. •

Let us conclude with some terminology concerning subcategories.

Definition 1.5.3 A subcategory 3$ of a category si consists of:

(1) a subclass \8\ C \si\ of the class of objects,
(2) for every pair of objects A, A! e si, a subset &(A, A') C si {A, A1),

in such a way that

(1) f G <8(A, Af) and g G #(A', A") => g o f e @{A, A"),
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20 The language of categories

FA ^—> GB

Fa Gb

FA' j,—> GBf

Diagram 1.11

(2) VAe<%, lA

A subcategory Sb of si thus gives rise to an injective (and therefore
faithful) inclusion functor 0£ >s/.

Definition 1.5.4 A subcategory & of a category si is called a full
subcategory when the inclusion functor ^ > si is also a full functor.

& is thus full in si when

A, A' e <% =» *(A, A1) = j*(A, A').

The category of sets and injections between them is a (non-full) subcat-
egory of the category of sets and mappings. The category of finite sets
and mappings between them is a full subcategory of the category of sets
and mappings. A full subcategory can clearly be defined by just giving
its class of objects.

1.6 Comma categories
We indicate now a quite general process for constructing new categories
from given ones. This type of construction will be used very often in this
book.

Definition 1.6.1 Consider two functors F.si ><£ and G\@ ><g.
The "comma category" (F, G) is defined in the following way.

(1) The objects of (F, G) are the triples (A, / , B) where Aes/,B e@
are objects and f: FA >GB is a morphism of^.

(2) A morphism of (F, G) from (A, / , B) to (A', / ' , B') is a pair (a, b),
where a: A >Af is a morphism of sd', b: B >B is a morphism
of &, and f o F(d) = G{b) o / (see diagram 1.11).

(3) The composition law in (F, G) is that induced by the composition
laws of si and 3b, thus
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1.6 Comma categories 21

u G

U'

F ' E

Diagram 1.12

a G

Diagram 1.13

Proposition 1.6.2 Consider functors F.si >%>, G:3$ >^ and
their corresponding comma-category (F,G). There are two functors
U: (F,G) > J / , V: (F,G) >@ (see diagram 1.12); moreover there
exists a canonical natural transformation

Proof With the notation of 1.6.1 it suffices to define

The equality F o U = G o V has no reason at all to hold in general. The
natural transformation a is easily defined by OL^AJ.B) = / ; the fact that
it is a natural transformation is just condition 1.6.1.(2). •

Proposition 1.6.3 In the situation and with the notations of 1.6.2,
consider a category 3>, two functors U': Q) >s/, V: Q) >3$ (see

diagram 1.13) and a natural transformation

a'.FoU' ^GoV1.

In that case there exists a unique functor W: <3) >(F, G) such that

Cambridge Books Online © Cambridge University Press, 2009
Downloaded from Cambridge Books Online by IP 131.111.250.235 on Fri Mar 27 22:02:26 GMT 2015.

http://dx.doi.org/10.1017/CBO9780511525858.003
Cambridge Books Online © Cambridge University Press, 2015



22 The language of categories

Proof The conditions imposed on W indicate immediately what it
should be:

for an object D G @> and

W{d) = (U'd,V'd)

for a morphism dof&>, which already proves the uniqueness of such a W.
To prove the existence, it suffices to observe that the previous formulas
indeed define a functor W: Q) > (F, G). U

We shall refer to proposition 1.6.3 as the "universal property" of the
comma category.

A special but very important case of a comma category is the "cate-
gory of elements" of a functor F: si >Set.

Definition 1.6.4 Consider a functor F: si >Set from a category si
to the category of sets. The category Elts(F) of "elements ofF" is defined
in the following way
(1) The objects of Elts(F) are the pairs (A, a) where A G \s/\ is an

object and a G FA.
(2) A morphism f: (A, a) >(£,&) of Elts(F) is an arrow f:A >B

of A such that Ff(a) = b.
(3) The composition of Elts(F) is that induced by the composition of

si.

Let us write 1 for the discrete category with a single object •;

1:1 >Set, ••-•{*}

is the functor which maps the unique object • of 1 to the singleton {*}.
In other words, we view 1 as the full subcategory of Set generated by a
singleton set. Since an element a G FA can be seen as a morphism from
a singleton to FA, thus as a morphism of the type l(A) >F(A) in
Set, the category Elts(F) is exactly the comma category (1,F). Notice
that the forgetful functor (/>p: Elts(F) >si is defined by </>F(^> a) — A
on the objects and by 0 F ( / ) = / on the morphisms.

Another interesting example of a comma category is the "product" of
two categories.

Definition 1.6.5 The product of two categories si and 0£ is the category
si x $ defined in the following way

(1) The objects of si x @ are the pairs (A, B) with A G \si\, B G |^ |
objects of si, 36.
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1.1 Monomorphisms 23

(2) The morphisms (A,B) >(A', Bf) of si x 0b are the pairs (a, b)
where a: A >Af is a morphism of si and b:B >Bf is a mor-
phism of 0b.

(3) The composition in si x 0b is that induced by the compositions of
si and 0b, namely

(af ,bf) o (a,b) = (a' o a,br ob).

With the product si X0b are associated the two "projection" functors

defined by the formulas

3) = A,

(a, b) = a,

These data satisfy the following "universal property".

Proposition 1.6.6 Consider two categories si and 0b. For every cate-
gory 3) and every pair of functors F: Q) >si, G: Q) >0b, there exists
a unique functor H:S> >si x 0b such that p^ oH = F,p@oH = G.

Proof H is the functor defined by

H(D) = (FD, GD) for an object D of 0 ,

H(d) = (Fd, Gd) for a morphism d of 2. •

Let us now observe the existence of a unique functor A^isi——>1:
this is the "constant functor" to the unique object of 1 (see 1.2.8.e).
Since 1 has just one single mapping, the comma category (A^, A<#) is
isomorphic to the product category si x 0b. Proposition 1.6.6 is then a
particularization of proposition 1.6.3.

A point of terminology: a functor F'.six 0b >(& defined on the
product of two categories is generally called a "bifunctor" (a functor of
two "variables").

1.7 Monomorphisms

When a composition law appears in some mathematical structure, spe-
cial attention is always paid to those elements which are "cancellable"
or "invertible" for that composition. This section is devoted to the study
of left cancellable morphisms in a category.
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24 The language of categories

Definition 1.7.1 A morphism f:A >B in a category <& is called a
monomorphism when, for every object C £ <& and every pair of mor-
phisms #, h: C > A, the following property holds:

We shall generally use the symbol / : A> >B to emphasize the fact
that / is a monomorphism.

Proposition 1.7.2 In a category <&,

(1) every identity morphism is a monomorphism,
(2) the composite of two monomorphisms is a monomorphism,
(3) if the composite k o f of two morphisms is a monomorphism, then

f is a monomorphism.

Proof We use the notation of 1.7.1 and consider another morphism
k:B >D.

(1) is obvious.
(2) If / and k are monomorphisms,

(3) If k o f is a monomorphism,

fog = foh=>kofog = kofoh=>g = h. •

The following terminology is rather classical.

Definition 1.7.3 Consider two morphisms f: A >B and g: B > A
in a category. When g o f = lAj f is called a section of g, g is called a
retraction of f and A is called a retract of B.

P r o p o s i t i o n 1.7.4 In a category, every section is a monomorphism.

Proof By 1.7.2.(1,3). •

Let us now say a word about the effect of a functor on a monomor-
phism.

Definition 1.7.5 Consider a functor F: si >0&.

(1) F preserves monomorphisms when, for every morphism f of s/,

f monomorphism => Ff monomorphism.

(2) F reflects monomorphisms when, for every morphism f of s&',

Ff monomorphism => / monomorphism.
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1.7 Monomorphisms 25

Proposition 1.7.6 A faithful functor reflects monomorphisms.

Proof Consider a faithful functor F: si >3$, a morphism / : A > A!
in s4\ and suppose Ff is a monomorphism in &. Choose another object
A" G si and two morphisms g, h: A!1 > A in si.

where the second implication holds since Ff is a monomorphism and
the last one follows from the faithfulness of F. •

Examples 1.7.7

1.7.7.a In the category Set of sets and mappings, the monomorphisms
are exactly the injections. Indeed, an element a G A can be viewed
as a mapping a: {*} >A from the singleton to A; therefore, given a
monomorphism / : A >B and elements a, o! G A,

a — a1'.

Conversely, if f:A >B is injective and gyh:CZZ^A are mappings
such tha t / o g = f o h, then for every element c G C

fog = foh=*'f{g(c))=f(h{c))
=> g(c) = h(c)

and therefore g = h.

1.7.7.b In the category Top of topological spaces and continuous map-
pings or its full subcategory Comp of compact Hausdorff spaces, the
monomorphisms are exactly the continuous injections. Indeed, an el-
ement of a space A corresponds to a continuous mapping {*} >A
from the singleton to A; therefore the argument of 1.7.7.a can be carried
over.

1.7.7.C In the categories Gr of groups and Ab of abelian groups, the
monomorphisms are exactly the injective group homomorphisms. The
argument is again analogous, using now the bijective correspondence
between the elements a G G of a group and the group homomorphisms
a: Z >G from the group of integers to G; we recall the correspondence:

a(z) = z • a, a = a(l).
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26 The language of categories

1.7.7.d In the category Rng of commutative rings with a unit, the
monomorphisms are exactly the injective ring homomorphisms. Repeat
the argument using now the ring homomorphisms with domain the ring
Z[X] of polynomials with integral coefficients: an element r G R of a
ring R corresponds to the ring homomorphism f: Z[X] >R mapping
the polynomial p(X) to p{r)\ conversely r = f(X).

1.7.7.e In the category Mod/* of right modules on a ring R with unit,
the monomorphisms are exactly the injective i?-linear mappings. Use
again the same argument using the i?-linear mapping with domain the
ring R itself: an element m G M of a i2-module M corresponds to the
linear mapping fn: R >M mapping r to mr; conversely m = ra(l).

1.7.7.f In the category Bani of real Banach spaces and linear contrac-
tions, the monomorphisms are exactly the injective linear contractions.
The elements of the unit ball of a Banach space B are in bijective cor-
respondence with the linear contractions a:M >B\ just put

a(r) = ra , a = a(l).

Therefore a monomorphism / : B >Bf is such that the implication

f(a) = f(a')^a = a'

holds for elements a, a1 in the unit ball of B\ by linearity of / , this
fact extends to arbitrary elements a, o! G B. The converse is once more
obvious.

1.7.7.g The previous examples could give the wrong impression that,
in "concrete" examples, a monomorphism is always exactly an injective
morphism. This is false as shown by the following counterexamples. We
give first an "algebraic" counterexample.

Consider the category Div of divisible abelian groups and group homo-
morphisms between them. The quotient morphism q: Q >Q/Z of the
additive group of rational numbers by the group of integers is definitely
not an injection, but it is a monomorphism in Div. Indeed, choose G a
divisible group and f,g:G >Q two group homomorphisms such that
qof = qog. Putting h = f — g we have qoh = 0 and the thesis becomes
h = 0. Given an element x G G, h(x) is an integer since q o h = 0. If
h(x) ^ 0 note that

/ x V _ 1
\2h(x)J ~ 2
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1.8 Epimorphisms 27

and therefore

which is a contradiction.

1.7.7.h Let us give now a "topological" counterexample. We consider
the category whose objects are the pairs (X, x) where X is a connected
topological space and x € X is a base point; in this category, a morphism
/ : (X, x) > (y, y) is a continuous mapping / : X >Y which preserves
the base points, i.e. such that f(x) = y. Let us consider the projection
7T of the circular helix H on the circle S1,

n:(H,h) >(S\s),

with h EH and s = TT(/I). If / : (X, x) >(S1, s) is a morphism in our
category which admits a "lifting"

g:(X,x) >(H,h)

through the projection TT, that lifting is necessarily unique (see Spanier,
page 67). But this expresses exactly the fact that TT is a monomorphism.

1.8 Epimorphisms

We now turn our attention to right cancellable morphisms in a category.

Definition 1.8.1 A morphism f:B >A in a category <£ is called an
epimorphism when, for every object C £ # and every pair of morphisms
#, h: A >C, the following property holds:

(9°f = hof)=>{g = h).

We shall generally use the notation / : B »A to emphasize the fact
that / is an epimorphism.

Proposition 1.8.2 In a category <&,

(1) every identity morphism is an epimorphism,
(2) the composite of two epimorphisms is an epimorphism,
(3) if the composite f ok of two morphisms is an epimorphism, then f

is an epimorphism.

Proof We use the notation of 1.8.1 and consider another morphism
k:D >B.

(1) is obvious.
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28 The language of categories

(2) If / and k are epimorphisms,

hofok = gofok=>hof = gof=>h = g.

(3) If / o k is an epimorphism,

gof = hof=>gofok = hofok=>g = h. •

Proposition 1.8.3 In a category, every retraction is an epimorphism.

Proof By 1.8.2.(1,3). •

Transposing definition 1.7.5 to the case of epimorphisms, we obtain

Proposition 1.8.4 A faithful functor reflects epimorphisms.

Proof Consider a faithful functor F: stf >^, a morphism / : A! > A
and suppose Ff is an epimorphism in @t. Choose another object A!' G si
and two morphisms g,h: A \ A" in stf. Then

gof = hog=>FgoFf = FhoFf

where the second implication holds since Ff is an epimorphism and the
last one follows from the faithfulness of F. •

The similarity of the previous proofs with those of section 1.7 is strik-
ing: this is a special instance of the "duality principle" described in
section 1.10.

Examples 1.8.5
1.8.5.a In the category Set of sets and mappings, the epimorphisms are
exactly the surjective mappings. Choose f:A >B a surjective map-
ping and #, h: B >C two mappings such that g o f = h o / . For every
element b G J3, we can find an element a G A such that f(d) = 6;
therefore

9{b)=g{f{a))=h{f{a)) = h{b),

which proves the equality g = h.
Conversely, if / : A > B is an epimorphism, consider the two-element

set {0,1} and the following mappings g, h: B >{071}:

g(b) = 1 if bef(A),

g(b) = 0i£btf(A),

h(b) = 1 for every b G B.
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1.8 Epimorphisms 29

Clearly gof = hofis the constant mapping on 1; therefore g = h and
f(A) = B.

1.8.5.b In the category Top of topological spaces and continuous map-
pings, the epimorphisms are exactly the surjective continuous mappings.
The previous proof applies when {0,1} is provided with the indiscrete
topology.

1.8.5.C In the category Haus of Hausdorff topological spaces and con-
tinuous mappings between them, the epimorphisms are exactly the con-
tinuous mappings with a dense image. We recall that a continuous map-
ping / : A >B has a dense image precisely when every element b € B

is the limit of a net of elements of /(A), i.e. a set of elements indexed
by a filtered poset (see 2.13.1); when B is a Hausdorff space, the limit
of a converging net is unique. Suppose / : A >B has a dense image
and choose g,h: B \c such that g o / = h o f. Given an element
b G B, choose a net (a^)^/ of elements in A such that b = lim/(ai). By
continuity of g, h we have

g(b) = ]\m(g o / ) (* ) , h(b) = \im(h o /)(<*;).

Since g o f = h o f and the limit is unique, we conclude that g(b) = h(b)
and thus g = h.

Conversely if / : A >B is an epimorphism, and B is not empty, A
cannot be empty. Indeed if 511B is the space constituted by two disjoint
copies of B, BIIB is a Hausdorff space and the two canonical inclusions
ii^2' R > fl H B are continuous and distinct. A empty would yield
ii o / = Z2o/ and thus i\ =12-, since / is an epimorphism. Now consider
the quotient of B which identifies with a single point the closure f(A)
of the image of A] this is a Hausdorff space as a quotient of a Hausdorff
space by a closed subspace; write p: B >B/f(A) for the corresponding
continuous projection. Since f(A) is not empty, we can consider as well
the constant mapping q:B >B/f(A) on the equivalence class of the
elements of f(A). Clearly p o f = q o f and therefore p = q, which proves
the equality f(A) = B.

1.8.5.d In the category Gr of groups and their homomorphisms, the
epimorphisms are exactly the surjective homomorphisms. Indeed, a sur-
jective homomorphism is clearly an epimorphism. Conversely suppose
/ : A >B is an epimorphism. We can factor / through its image

A >f(A) >B,

thus through a surjection followed by an injection. By 1.8.2.(3), the
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30 The language of categories

injective part is an epimorphism and so the problem reduces to proving
that an epimorphic inclusion is an identity.

Given two groups G, H with a common subgroup K, it is possible
to construct the amalgamation of G and H over K: this is the group
G *K H of words constructed with the "letters" of G and H, the two
copies of a "letter" of K being identified in G*K H. The amalgamation
property for groups tells us that the two canonical morphisms

G >G*KH, H >G*KH,

are injective and that two "letters" of G and H are identified in G * K #
just when they are the two copies of a "letter" in K (see Kuros). If
we apply that amalgamation property choosing the inclusion f(A) -̂> B
twice, we first deduce the equality of the two canonical inclusions

ii: B— >B *f(A) B, i>2'' B >Bf(A)

since they coincide on f(A) and f(A) >B is an epimorphism. But
then each element of B is already in f(A) by the amalgamation property.

1.8.5.e Consider a ring R with unit. In the category Mod/? of right R-
modules, the epimorphisms are exactly the surjective linear mappings. In
particular, choosing R = Z, the epimorphisms of the category of abelian
groups are exactly the surjective homomorphisms. Again a surjective
linear mapping is clearly an epimorphism. Conversely if / : A >B is an
epimorphism, consider both the quotient mapping and the zero mapping

p:B >B/f(A), 0:B >B/f(A).

From the equality

we deduce p = 0 and thus B = f(A).

1.8.5.f The form of epimorphisms in the category of commutative
rings with unit is known (see exercise 1.11.13); let us just emphasize the
fact that epimorphisms of rings are not necessarily surjective. Consider
the inclusion of the ring Z of integers in the ring Q of rational numbers,
z:Z >Q. This is clearly not a surjection but it is an epimorphism
of rings. Indeed given another ring A and two ring homomorphisms
/ , g: Q > A which agree on the integers, we deduce first that for every
integer 0 ^ z G Z, z is invertible in Q and therefore f(z) and g(z) are
invertible in A] clearly
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Since / and g agree on the integers, / Q) = 9 {^) a nd finally,

1.8.5.g In the category Bani of Banach spaces and linear contractions,
the epimorphisms are the linear contractions with dense image. Choose
/ : A >B with a dense image and #, h-.B \d such that gof = hof.
Since g and h agree on /(A), by continuity g, h agree on on f(A) = B as
well; therefore g = h. Conversely if / : A >B is an epimorphism, the
quotient of B by the closed subspace f(A) is a Banach space and both
the quotient mapping p and the zero mapping are linear contractions:

p:B >B/f{A), 0:B >B/f(A).

From the equalities pof = 0 = Oo/, we deduce p = 0 and thus B = f(A).

1.9 Isomorphisms
We consider finally the case of those morphisms of a category which are
invertible.

D e f i n i t i o n 1 . 9 . 1 A m o r p h i s m f : A >B in a category <$ is called
an isomorphism when there exists a morphism g:B >A of^ which
satisfies the relations

f °9 = 1 B , 9° f = 1A-

Clearly such a morphism g is necessarily unique; indeed if h: B > A
is another morphism with the same properties

we conclude that

g = golB=gofoh = lAoh = h.

Therefore we shall call such a morphism g "the" inverse of / and we
shall denote it by f~x.

Proposition 1.9.2 In a category,
(1) every identity is an isomorphism,
(2) the composite of two isomorphisms is an isomorphism,
(3) an isomorphism is both a monomorphism and an epimorphism.
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Proof

(1) is obvious.
(2) If f:A >B and g:B >C are isomorphisms, so is g o f and

(s°/)-1 = r1°<r1-
(3) is just the conjunction of 1.7.4 and 1.8.3 •

Proposition 1.9.3 In a category, if a section is an epimorphism, it is
an isomorphism.

Proof If go / — 1A and / : A >B is an epimorphism, from fogof = f
we deduce / o g = 1B. •

Proposition 1.9.4 Every functor preserves isomorphisms.

Proof Obvious. •

Transposing definition 1.7.5 to the case of isomorphisms, we obtain

Proposition 1.9.5 A full and faithful functor reflects isomorphisms.

Proof Obvious. •

Examples 1.9.6

1.9.6.a In the category Set of sets, the isomorphisms are exactly the
bijections.

1.9.6.b In the category Top of topological spaces, the isomorphisms are
exactly the homeomorphisms. Since a continuous bijection is in general
not a homeomorphism, this provides an example where the converse of
statement 1.9.2.(3) does not hold (see 1.7.7.b and 1.8.5.b).

1.9.6.c In the categories Gr of groups, Ab of abelian groups and Rng
of commutative rings with unit, the isomorphisms are the bijective ho-
momorphisms.

1.9.6.d In the category Mod# of right modules over a ring R, the
isomorphisms are the bijective U-linear mappings.

1.9.6.e In the category Ban^ of real Banach spaces and bounded linear
mappings, the isomorphisms are the bounded linear bijections. An iso-
morphism is obviously bijective. Conversely if / : A >B is a bounded
linear bijection, the inverse mapping f~lm.B >A is certainly linear.
By the open mapping theorem, / is open because it is surjective; but " /
open" means precisely " / - 1 continuous" and thus / - 1 is bounded.
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1.9.6.f In the category Bani of real Banach spaces and linear contrac-
tions, the isomorphisms are exactly the isometric bijections. An isometric
bijection is obviously an isomorphism. Conversely if the linear contrac-
tion f:A >B has an inverse mapping f~l:B >A which is also a
linear contraction, then for every element a € A

IMI = Iir7(a)|| < ||/(a)||
and thus ||a|| = | |/(a)|| since / is contracting.

1.9.6.g In the category Cat of small categories and functors, the iso-
morphisms are those defined in 1.5.1.

1.9.6.h Going back to example 1.2.6.d, a group can be seen as a cat-
egory with a single object all of whose morphisms are isomorphisms.

1.10 The duality principle

At this point the reader will have noticed that every result proved for co-
variant functors has its counterpart for contravariant functors and every
result proved for monomorphisms has its counterpart for epimorphisms.
These facts are just special instances of a very general principle.

Definition 1.10.1 Given a category si, the dual category si* is defined
in the following way:

(both categories have the same objects);
(2) for all objects A, B of si*, sit* {A, B) = si{B, A)

(the morphisms of si* are those of si "written in the reverse direc-
tion"; to avoid confusion, we shall write f*:A >B for the mor-
phism of si* corresponding to the morphism f:B > A of si);

(3) the composition law of si* is given by

r ° <?* = (<? ° / r -
Metatheorem 1.10.2 (Duality principle) Suppose the validity, in ev-
ery category, of a statement expressing the existence of some objects or
morphisms or the equality of some composites. Then the "dual state-
ment" is also valid in every category; this dual statement is obtained
by reversing the direction of every arrow and replacing every composite
f ° 9 by the composite g o f.

Proof If S denotes the given statement and S* denotes its dual state-
ment, proving the statement 5* in a category si is equivalent to proving
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34 The language of categories

the statement S in the category si*, and this is supposed to be valid.

•
For example, the notion of / : A >B being a monomorphism in si

means

The dual notion is thus that of a morphism / : B > A which satisfies

V C G J / V j , / l € si (A, C) gof = hof^g = h

. . . which is exactly the notion of an epimorphism. With that remark in
mind, it is obvious that all the results of section 1.8 are just the dual
statements of the results of section 1.7: so, formally, the validity of the
latter follows at once from the validity of the former via the duality
principle.

The case of contravariant functors can also be reduced to the case
of covariant functors via the consideration of the dual category: a con-
travariant functor from si to & is just a covariant functor from si* to
$ (or, equivalently, a covariant functor from si to 0}*).

It is interesting to notice that, in category theory, some notions are
their own dual. For example / : A >B is an isomorphism when

3 g : B >A g o f = lA, f o g = lB.

The dual notion is that of a morphism / : B > A with the property

3g:A >B f o g = 1A, g o f = 1B

. . . but this is again the definition of / being an isomorphism.

Examples 1.10.3

1.10.3.a With every category si we can associate a bifunctor, still
written si,

si: si* x si >Set,

defined by the following formulas:

• si (A, B) is the set of morphisms from A to B;
• if / : A' > A and g: B >B' are morphisms of si,

&), s*(f,g)(h) = goho f.

Fixing the first variable A we obtain the covariant functor defined in
1.2.8.d and fixing the second variable B we obtain the contravariant
functor defined in 1.4.3.b. The bifunctor si is called the "Horn-functor"
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1.10 The duality principle 35

of the category si (from "homomorphism"); it is "contravariant in the
first variable and covariant in the second variable".

1.10.3.b The dual of the category of sets and mappings is equiva-
lent to the category of complete atomic boolean algebras and (V — A)-
preserving homomorphisms. Indeed, writing CBA for the second cate-
gory, the contravariant power set functor can be seen as a contravariant
functor P*:Set >CBA. It is well-known that every complete atomic
boolean algebra B is isomorphic to the power-set VX of its set X of
atoms. Let us prove now that P* is a full and faithful functor. Given
two sets X and Y, the mapping

Set(X,Y)

is obviously injective. To prove it is surjective, let us consider a morphism
g: V*Y >V*X in CBA and an element x G X = g(Y) {g preserves the
top element). Now Y is the union of its singletons and g preserves unions,
so there exists some y E Y such that x G g({y})- Such an element y is
necessarily unique since x € g({y'}) with yf ^ y would imply

=0,

because g preserves intersections and the bottom element. Writing f(x)
for that element y, it follows easily that g is just f~l.

1.10.3.C The dual of the category of abelian groups and their homo-
morphisms is equivalent to the category of compact abelian groups and
continuous homomorphisms. This is just the Pontryagin duality theo-
rem: with every abelian group A is associated its group of characters
A = Horn (A, U) where U is the circle group and the topology of A is
that induced by the product topology UA; with every homomorphism
/ : A >B is associated the morphism / : B > A of composition with

1.10.3.d The category of finite abelian groups and their homomor-
phisms is equivalent to its own dual category. Indeed, it suffices to par-
ticularize the Pontryagin duality to the case of finite groups: when A is
finite, A is isomorphic to A as a group and therefore is finite. But the
finite compact groups are just the finite discrete groups, thus finally just
the finite groups.
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1.11 Exercises

1.11.1 If two ordered sets A, B are viewed as categories (see 1.2.6.b),
prove that a functor from A to B is just an order preserving mapping.
If / , g: A I B are two such functors, prove that there exists a (single)
natural transformation from / to g if and only if for every element a € A,
f(a) < g(a).

1.11.2 If two monoids M and N are viewed as categories (see 1.2.6.d),
prove that a functor from M to N is just an homomorphism of monoids.
What is a natural transformation between two such functors?

1.11.3 In exercise 1.11.2, if M and N are groups, show the existence
of a natural transformation between two functors / , g: M >N if and
only if / and g are conjugate:

3n G N Vra G M f(m) = n" 1 • g(rn) o n.

1.11.4 If G is a group considered as a category (see 1.9.6.h), prove that
a natural transformation on the identity functor of G is just an element
of the centre of G.

1.11.5 Prove that a covariant represent able functor preserves monomor-
phisms.

1.11.6 Prove that a contravariant representable functor maps an epi-
morphism to a monomorphism.

1.11.7 Prove that the forgetful functor Rng >Set which maps a ring
to its underlying set is faithful and representable by the ring Z[X], but
does not preserve epimorphisms. [Hint: see 1.8.5.f.]

1.11.8 If $4, $, *€ are small categories, prove the isomorphism of cate-
gories

where Fun denotes the category of functors and natural transformations.

1.11.9 Prove that a retraction which is a monomorphism is necessarily
an isomorphism.

1.11.10 Determine the nature of the monomorphisms, epimorphisms
and isomorphisms in examples 1.2.7.

1.11.11 Consider a small category s/ and the corresponding functor
category Fun(j/, Set). Prove that a morphism a of Fun(j/, Set) (a natural
transformation) is a monomorphism if and only if each component a A ,
A G .a/, is a monomorphism in Set. [Hint: use the Yoneda lemma].
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: X > Y

Diagram 1.14

1.11.12 The statement in 1.11.11 is no longer valid when Set is replaced
by an arbitrary category Si. Consider the categories of diagram 1.14 (as a
convention, identity arrows are not shown) where, in ^ , the two compos-
ites fog and foh are equal to k. The category Fun(«s/, Si) is the category
of arrows of Si (see 1.2.7.c). The pair ( 1 B , / ) : (B,1B,B) >(£ , / , C)
is a monomorphism in Fun(j/, $) while / is not a monomorphism in Si.

1.11.13 Consider the category Rng of commutative rings with unit.
A morphism f:A >B is an epimorphism precisely when given any
element 6 G B , the equality 1 ® b = b ® 1 holds in B <8U B. This is also
equivalent to saying that the morphism B >B <S)A B is surjective, or
again equivalently is an epimorphism.
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